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1   Introduction 
 

Modern society grows increasingly reliant on the Internet, a network of global reach 
that supports many services and clients. However, in such a large-scale distributed 
network, meeting quality-of-service requirements presents a difficult challenge 
because hotspots of network load move around and traffic anomalies arise 
unpredictably in space and time. In this chapter, we will demonstrate that observing 
network dynamics at a macroscopic level is likely to contribute to better network 
engineering and management.   

The Internet is an enormous network of networks without central control or 
administration. Millions of computers around the world attach to the Internet through 
many autonomous regional networks of routers, which interconnect through backbone 
networks of routers in a distributed, hierarchical fashion. Internet computers exchange 
data with each other in units called packets, where each packet is accepted by a 
router, stored temporarily, and then forwarded on to a next router. This accept-store-
and-forward cycle begins when a source computer transmits a packet to an entry 
router and continues until the packet is forwarded to its intended destination by an 
exit router. The Internet’s design is guided by the end-to-end principle [1], which 
allocates simple functionality to routers, while pushing complexities of specific 
applications and of congestion avoidance mechanisms outside the network and into 
attached computers. The implication of this design principle is that Internet routers 
see no relationship among individual packets, while “end-to-end” protocols 
implemented in Internet-attached computers manage all state associated with data 
exchanges. The basic communication protocol of the Internet is called TCP/IP 
(Transmission-Control Protocol/Internet Protocol) [2]. IP is a “hop-by-hop” protocol 
used by source computers to inject packets into the Internet, and used by Internet 
routers to store-and-forward packets among multiple routers along a path, and then 
finally to forward the packet to its destination computer. TCP is an end-to-end 
protocol operating on logical connections between pairs of computers. 

TCP includes a congestion-control algorithm to ensure that a sender does not 
transmit more data than the network can handle. The TCP congestion-control 
algorithm exhibits a self-organizing property: when a large number of logical 
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connections share the Internet, underlying interactions among the connections avoid 
router congestion simultaneously over varying spatial extent; however, the network-
wide effects created by such interactions are difficult to determine. The spatial-
temporal dynamics of Internet traffic is also difficult to characterize due to highly 
variable user demands and to unpredictable resource availability. Further, not every 
client using the Internet is honest or co-operative. For example, distributed denial-of-
service (DDoS) attacks, which arise when large numbers of compromised computers 
send traffic simultaneously toward a victim (e.g., a web server or a router) [3], may 
intermittently disturb the normal operating condition of the Internet. All these sources 
of variability inhibit easy characterization of Internet-wide traffic dynamics.  

We suspect that, where many globally distributed data flows simultaneously 
transit a large network, the self-organizing properties of the TCP congestion-control 
algorithm might lead to the emergence of collective behavior, as in other complex 
systems [4]. Collective emergent phenomena often can be identified when the 
behavior of an entire system appears more coherent and directed than the behavior of 
individual parts of the system. In this way, any single data flow across a large 
network would not face a totally random condition, but more likely would adapt itself 
to a steady collective state, in which the flow could make little change. If such an 
emergent collective property occurs in large networks, and if we can describe and 
visualize the associated patterns, then perhaps such knowledge can be used to 
improve global network performance and to increase resistance to subtly engineered 
DDoS attacks.  

Since emergent coherent behavior exhibits a spatial-temporal dependence among 
collective data flows over a whole network, correlation might be key to describing 
emergent patterns. A number of empirical studies on traffic measurements have 
convincingly demonstrated that actual Internet traffic exhibits long-range dependence 
(LRD) [5-7], which implies the existence of nontrivial correlation structure at large 
timescales. However, in these studies, the LRD found in Internet traffic was not 
attributed to an emergent, spontaneous order at the macroscopic (whole network) 
level. Instead, these studies attributed LRD to the linear multiplexing of a large 
number of highly variable traffic sources [8]. This explanation apparently ignores any 
nonlinear relationships that might arise as collective flows compete for network 
resources (router buffers and link capacity) over space and time. To understand the 
potential collective effect in large-scale networks, we conducted our own studies to 
identify the reasons behind LRD traffic phenomena [9-11]. We found that network 
size has greater influence than other factors—e.g., high variability in traffic sources 
and choice of transport mechanism—on the temporal dynamics of network 
congestion. Our findings suggesting the importance of network size in generating 
emergent collective behavior led us to consider how we might examine both the 
spatial and temporal dynamics of network congestion. 

Recently, graph wavelets have been proposed for spatial traffic analysis given 
knowledge of aggregate traffic measurements extracted at intervals over all links [12]. 
This method can provide a highly summarized view of traffic load throughout an 
entire network. There seems to be no stringent time limit for producing a snapshot of 
network-wide load with such spatial traffic analysis; however, spatial-temporal traffic 
analysis, which reveals the time-varying nature of spatial traffic, may have to perform 
in a timely manner. Currently, spatial-temporal traffic analysis presents practical 
difficulties, not only because large-scale distributed networks exhibit high-
dimensional traffic data, but also because mining large amounts of data may strain 
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memory and computation resources in even the most advanced generation of desktop 
computers. Moreover, routers may be heavily utilized, and thus fail to collect and 
transfer data, often when the routers are of most interest (due to their congested 
nature). Given these practical constraints, it would be appealing to reduce the amount 
of data to transfer and process, while retaining the ability to observe spatial-temporal 
traffic dynamics. We believe that the emergence of collective behavior (with its 
associated global order) could be exploited to concisely capture spatial-temporal 
patterns with sparse observation points. In other words, if emergent behavior arises in 
a large network, then traffic will be correlated over wide space-time and, thus, might 
be characterized by sampling a small number of points. On the other hand, if network 
traffic exhibits little space-time correlation, then sampling a small number of points 
would not prove particularly revealing.  

A recent study of correlations among data flows in a French scientific network, 
Renater [13], detected the signature of collective behavior. The Renater study uses 
methods from random matrix theory (RMT) to analyze cross-correlations between 
network flows. In essence, RMT compares a random correlation matrix—a 
correlation matrix constructed from mutually uncorrelated time series—against a 
correlation matrix for the data under investigation. Deviations between properties of 
the cross-correlation matrix from the investigation data and the correlations in the 
random data convey information about “genuine” correlations. In the case of the 
Renater study, the most remarkable deviations arise about the largest eigenvalue and 
its corresponding eigenvector. The largest eigenvalue is approximately a hundred 
times larger than the maximum eigenvalue predicted for uncorrelated time series. The 
largest eigenvalue appears to be associated with a strong correlation over the whole 
network. In addition, the eigenvector component distribution of the largest eigenvalue 
deviates significantly from the Gaussian distribution predicted by RMT. Further, the 
Renater study reveals that all components of the eigenvector corresponding to the 
largest eigenvalue are positive, which implies their collective contribution to the 
strong correlation. Since all network data flows contribute to the eigenvector, the 
eigenvector can be viewed as the signature of a collective behavior for which all 
flows are correlated.  

In fact, the eigenvector corresponding to the largest eigenvalue provides an 
important clue, which led us to a novel method for observing spatial-temporal 
dynamics at the macroscopic level [14]. As the macroscopic pattern emerges from all 
adaptive behaviors of data flows in various directions, hotspots should be exposed 
through their correlation information, as the joining points of significantly correlated 
data flows. Note that the details of the components of the eigenvector of the largest 
eigenvalue reveal this information, with the larger components corresponding to the 
more correlated flows. Therefore, we define a weight vector by grouping eigenvector 
components corresponding to a destination routing domain together to build up 
information about the influence of the domain over the whole network. Contrasting 
weights of the weight vector against each other in space and time, we not only can 
summarize a network-wide view of traffic load, but can also locate hot spots, and can 
even observe how spatial traffic patterns change from one time period to the next. 

Using this macroscopic-level method inevitably encounters issues of scale, that 
is, gathering data from numerous distributed measurement points, and consuming 
computation time and memory when analyzing data. The Renater study assumes 
complete information from all network connection points, which proves feasible 
because the Renater network contains only about 30 interconnected routers. We have 
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figured out how to scale down the coverage problem by exploiting an emergent 
collective phenomenon, called the correlation increase [14]. Correlation increases 
arise from collective response of the entire network to changes in traffic. This effect 
has already been observed in the framework of stock correlations, where cross-
correlations become more pronounced during volatile periods as compared to calm 
periods [15]. Indeed, higher values of the largest eigenvalue occur during periods of 
high market volatility, which suggests strong collective behavior accompanies high 
volatility. This connection has value in our analysis because Internet traffic behavior 
appears to be nonstationary [16]. An increase in cross-correlation allows us to infer a 
shift in the spatial-temporal traffic pattern of large areas of interest outside those few 
areas where measurements are made. This approach could significantly reduce 
requirements for data, perhaps to the point where analysis could occur in real time.  

In this chapter, we use simulation results to show how this innovation could 
succeed in a large TCP/IP network. We apply our technique to identify network 
hotspots and to expose large-scale DDoS attacks in our simulation environment. The 
rest of this chapter is structured as five sections. Section 2 delineates a simulation 
model we developed recently to study space-time characteristics of congestion in 
large networks, and to analyze system behavior as a coherent whole. In Section 3, we 
describe our technique for spatial-temporal traffic analysis. In Section 4, we show 
how our technique captures network-wide patterns shifting over time. Section 5 
demonstrates the macroscopic effect of DDoS flooding attacks, and shows how our 
technique could provide significant information to detect and defend against such 
attacks. We present concluding remarks in Section 6. 

 

2   Modeling a Large-scale TCP/IP Network  
 
Network simulation plays a key role in building an understanding of network 
behavior. Choosing a proper level of abstraction for a model depends very much on 
the objective. Studying collective phenomena seems to require simulating networks 
with a large spatial extent. Appropriate models for such studies should also include 
substantial detail representing protocol mechanisms across several layers of 
functionality (e.g., application, transport, network, and link), yet must also be 
restricted in space and time in order to prove computationally tractable. Previously, 
we adopted a two-tier modeling approach that maintains the individual identity of 
packets, producing a full-duplex “ripple effect” at the packet level, and that also 
accommodates spatial correlations in a regular network structure [10, 11]. While our 
two-tier model has been applied successfully to qualitatively understand some traffic 
characteristics in large-scale networks [11, 14], some doubts exist about the realism 
inherent in the regular network structure of such a model. In this chapter, we retain 
the individual identity of packets but we replace the regular network structure of our 
previous two-tier model with a large-scale irregular topology chosen to resemble the 
topology of a real network. 
 
2.1   Topology 

 
Here, we transform our regular two-tier model into an irregular four-tier topology, as 
shown in Figure 1. (The host-computer tier is not shown in Figure 1.) While the 
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network core becomes heterogeneous and hierarchical, (tier-four) host-computer 
behavior remains homogeneous at the edge of the network. The (tier-one) backbone 
topology, including eleven (backbone) routers (A, B, … K), resembles the original 
Abilene network, as described elsewhere [12]. Links between backbone routers have 
varying delays. For example, the longest link between backbone routers D and F has a 
20-ms propagation delay; the shortest propagation delay (3 ms) exists on the link 
between backbone routers J and K. Forty (tier-two) subnets connect to the backbone 
through subnet routers, represented by designators such as A1 and B2. Each subnet 
contains a variable number of (tier-three) leaf routers, such as A1a and B2b. Each leaf 
router supports an equal number (200 in this chapter) of (tier-four) source hosts, and a 
variable number (< 800 in this chapter) of (tier-four) receivers, activated on demand. 
Link capacities gradually increase from host (tier four) to backbone, with (tier-one) 
backbone links being hundreds of times faster than links to (tier-four) hosts. 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 1: Four-tier simulation model with 11 (tier-one) 
backbone routers, 40 (tier-two) subnet routers, and 110 (tier-
three) leaf routers. The 22,000 (tier-four) source hosts and 
the up to 88,000 (tier-four) receivers are not shown. 

 
2.2   Traffic sources 

 
There are a total of 22,000 sources in our model, which operates at the packet level. 
Each source models traffic generation as an ON/OFF process, which alternates 
between wake and sleep periods with average durations λon and λoff, respectively. 
When awake, a source may send, subject to any restrictions imposed by TCP, one 
packet at each time-step to the source’s attached leaf router. The packet will be placed 
at the end of the router’s queue. At the beginning of each ON period, a destination 
receiver is chosen randomly from among leaf routers other than the local leaf routers, 
i.e., all flows must transit through at least one backbone link. When sleeping, the 
source does not generate new packets at each time-step. ON/OFF sources provide a 
convenient model of user behavior.  
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Empirical measurements on the Internet observe a heavy-tailed distribution of 
transferred file sizes [7]. Here, we use the Pareto distribution for both ON and OFF 
processes with the same shape parameter α [11]. In this chapter, λon = 50, λoff = 5000 
and α = 1.5.  

 
2.3   Routers 

 
Packets, the basic unit of transmission on TCP/IP networks, contain destination 
addresses used by routers to correctly forward and source addresses used by receivers 
to identity the destination address for reply packets. To store and forward packets, 
which in our model travel a constant, shortest path between a source-destination pair 
for each flow, all routers maintain a queue of limited length (160 packets/router here), 
where arriving packets are stored until they can be processed: first-in, first-out. For 
convenience, in this chapter we assume that every discrete simulation time-step is 1 
millisecond. However, each leaf router, subnet router, or backbone router can in turn 
forward 5, 20, or 160 packets during one millisecond. This simulates capacity 
differences among various link classes from leaf-access to backbone in a 
hierarchically structured network. With such parameter settings, simulated backbone 
links are very lightly loaded. 

We select several subnet routers as observation points, e.g., B4, D5, F4, I1, and 
J5, which record all outbound flows to destination leaf routers. In this chapter, we 
assume that a central collector reliably receives a continuous stream of measured data 
from observation points in time to perform analysis for our various experiments. 
 

3   Representing Macroscopic-level Traffic Dynamics  
 
In this section, we discuss briefly our approach to represent traffic dynamics at a 
macroscopic-level. First, we describe how we represent network flow data. Second, 
we outline our use of cross-correlation analysis. Finally, we depict our technique to 
summarize network-wide traffic load using a weight vector. 
 
3.1   Representing network flow data 
 
Assume that there are N leaf routers, interconnecting through subnet routers and 
backbone routers to form a large-scale distributed network, where L subnet routers 
are deployed as observation points to log outbound traffic. First, we need to represent 
packets flowing between distinct source-destination pairs at each sampling interval. 
Let x = (x1, x2, …, xN)T denote the flow vector of corresponding packet counts, 
observed in L subnets during a given time interval. Each element of this flow vector is 
itself a vector defining the number of packets flowing into the corresponding leaf 
router from each of the observation subnets in the distributed network. The method to 
obtain all flow variables in this vector is to first enumerate all the destination leaf 
routers and then the observation posts by 1 to L, and group these indices by leaf 
router: the subnets sending to the first leaf router in the first block, x1, and those 
sending to the second leaf router in the second block, x2, and so forth. Thus, we form 
x with subvectors in the order x1 = (x11, x21, …, xL1 )T, x2 = (x12, x22, …, xL2 )T, …, xN = 
(x1N, x2N, …, xLN )T, where xij represents  packet flow from the ith observation point (i 
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=1, 2, …, L) to the jth leaf router (j =1, 2, …, N). Each flow variable xij is normalized 
as fij by its mean mij and standard deviation σij, 
                                                ./)( ijijijij mxf σ−=                                             (1) 
Then, the normalized flow vector f, corresponding to x, comprises N normalized 
subvectors, fk (k =1, 2, …, N), where each subvector is formed from normalized flow 
variables fik ( Li ≤  and Nk ≤ ).  
 
3.2   Cross-correlation analysis 

 
Cross-correlation analysis is a tool commonly used to analyze multiple time series. 
We can compute the equal-time cross-correlation matrix C with elements 
                                              ,)()())(( tftfC klijklij =                                           (2) 

which measures the correlation between ijf and ,klf  where ⋅⋅⋅ denotes a time 
average over the period studied. The cross-correlation matrix is real and symmetric, 
with each element falling between –1 and 1. Positive values indicate positive 
correlation, while negative values indicate an inverse correlation. A zero value 
denotes lack of correlation.  

We can further analyze the correlation matrix C through eigenanalysis [17]. The 
equation 
                                                         Cw = λw                                                        (3) 
defines eigenvalues and eigenvectors, where λ is a scalar, called the eigenvalue. If C 
is a square K-by-K matrix, e.g., )1( −= NLK  here, then w is the eigenvector, a 
nonzero K by 1 vector (a column vector). Eigenvalues and eigenvectors always come 
in pairs that correspond to each other. This eigenvalue problem has K real 
eigenvalues, some of which may repeat. An eigenvector is a special kind of vector for 
the matrix it is associated with, because the action of the underlying operator 
represented by the matrix takes a particularly simple form on the eigenvector input: 
namely, simple rescaling by a real number multiple. The eigenvector w1 

corresponding to the largest eigenvalue λ1 often has special significance for many 
applications. There are various algorithms for the computation of eigenvalues and 
eigenvectors [17]. Here, we exploit the MATLAB eig command, which uses the QR 
algorithm to obtain solutions [18]. 
 
3.3   Defining the weight vector 
 
The cross-correlation matrix contains within itself information about underlying 
interactions among various flows. The components of the eigenvector w1 of the 
largest eigenvalue λ1 represent the corresponding flows’ influences on macroscopic 
behavior, abstracted from the matrix C into the pair (λ1, w1). The eigenvector w1 
comprises N subvectors, i.e., w1 = (w1

1, w1
2, …, w1

N)T. The kth subvector w1
k, 

corresponding to the kth leaf router, is formed from components w1
ik ( Li ≤  and 

Nk ≤ ) representing the ith obsevation point’s contribution to the kth leaf router. We 
consider the square of each component, (w1

ik)2, instead of w1
ik itself because 

1)(
,

21 =∑
ki

ikw  [19]. We define the weight Sk (k = 1, 2, …, N) to be the sum of all 

(w1
ik)2 in the kth subvector w1

k, i.e., 
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                                                      ∑=
L

i
ikk wS 21 )( .                                               (4) 

Sk represents the relative strength of the contributions of the flows towards the kth leaf 
router. Thus, the knowledge of weight vector S = (S1, S2, …, SN) across varying k 
constitutes one summary view of network-wide traffic load. The evolving pattern of 
spatial-temporal correlation might allow us to infer where and when network 
congestion emerges. 
 

4   Capturing Shifting Spatial-temporal Patterns 
 

Internet access is never evenly distributed. Flash-crowds are quite common. Hot spots 
might develop and break up more quickly than the network could be re-provisioned to 
respond. However, capturing the movement of hot spots seems very difficult. Here, 
we try to use our technique to observe the macroscopic dynamics of such phenomena. 

To deliberately induce congestion, we let one selected leaf router have an 
additional five percent probability for selection as the destination domain. This is a 
natural way to change the network-wide traffic demand at longer timescale. Figure 2 
depicts a change in congestion in leaf routers. The vertical axis represents the 
congested location within 11 backbone-router zones, each of which denotes the subset 
of leaf routers therein. At first, leaf router H4b is congested (up until time, t, is 400 s). 
From t = 400 s, C2b is selected as a new location to induce congestion. This 
congestion-induction technique offers an easily interpreted framework to analyze 
spatial-temporal pattern shifts driven by varying traffic demand.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Congested location changing over time from leaf 
router H4b to leaf router C2b. 
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4.1   Timescale of interest 
 

When focusing on network-wide behavior, the timescale of interest should not be 
fine-grained. The microscopic fluctuations observed at shorter timescales usually 
reflect local details, while the driving force of traffic demand seems to vary over 
much longer timescales. The timescale of interest in our experiments appears at a 
middle range, similar to the concept of a critical timescale beyond which traffic 
fluctuation is supposed to exhibit greater influence than microscopic fluctuations 
[20]. At this middle timescale, macroscopic (coherent) behavior emerges as a 
connecting link between short-range microscopic fluctuations and the longer-range 
driving force of variations in traffic demand. This coherence is expected to emerge as 
a result of adaptive behaviors among data flows in different directions, but then to 
continue to shift its spatial-temporal pattern under the force of traffic demand.  

We first form an observation system of eleven points (L = 11) by selecting one 
subnet router in each backbone-router zone, instead of observing all subnets in all 
backbone-router zones. We observe, at a granularity of 200ms, every fine-grain flow 
from these subnet routers to every leaf router (N = 110). (In a subsequent section, we 
will try to further reduce observation points.)  

Now, we calculate the weight vector S with M data points (M = 200 in this 
chapter), which span a first period ( 2/M points) and a second period ( 2/M  points). 
Selecting an appropriate data length for analysis might be largely considered a trial-
and-error process (or the subject of future work). Here, we selected M = 200, which 
seemed to work fine. We tried M = 100 and 300, which confirmed a data length of 
200 more suitable for our experiments. Two weight vectors are calculated at the 
aggregated levels T = 0.4 s and T = 2 s, and shown respectively in Figure 3(a) and 
3(b). The weight vector with T = 2 s shows two prominent weights at leaf routers C2b 
and H4b (SC2b and SH4b), revealing the network-wide pattern of congestion arising in 
these two domains. However, the pattern does not appear when T = 0.4 s. To clarify 
the role of timescale here, we further show the sum of SC2b and SH4b at different 
aggregated levels in Figure 3(c). We find that the sum of SC2b and SH4b gradually 
increases as T increases, up until about T = 2 s.  

 
4.2   Increased correlation 

 
Figure 4(a) shows the sum of SC2b and SH4b, which is calculated with T = 1.6 s and 
with the time window, MT (= 200 × 1.6 s = 320 s), sliding ahead every 16 s. The 
corresponding λ1 shows in Figure 4(b). The time axis indicates the end of the moving 
time window. The sum of SC2b and SH4b, and the largest eigenvalue λ1 undulate almost 
in the same way, reaching higher values during the period of pattern shifting than 
during calm periods. The increased correlation in the simulation data emerges 
gradually after the second period starts, spreading the varying traffic demand to the 
entire network. During this transient period, flows in different directions have to 
adapt their behaviors to the changing congestion, and the flows continue to react to 
each other until they reach collectively a new coherent pattern.  

With the measurement and analysis method, as outlined above in Section 3, 
applied at the appropriate timescale, as cross-correlations become more pronounced, 
traffic patterns over the whole system become more visible. In the remaining 
experiments, described below, we focus on macroscopic dynamics at the timescale T 
= 2 s. 
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4.3 Spatial-temporal pattern 
   
It might prove feasible to design sample-based techniques suitable to identify 
network-wide patterns that remain invariant for a long time. However, when traffic 
demands vary over a large dynamic space-time range, these same techniques could 
fail to detect the more quickly changing patterns. By taking advantage of increased 
correlation arising over volatile periods, we might be able to use a sample-based 
version of our proposed method to identify shifting network-wide congestion 
patterns. In the following, we use only measurements from five (i.e., L = 5) subnet 
routers (B4, D5, F4, I1, and J5) to perform our analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Two weight vectors at T = 0.4 s (a) and T = 2 s (b), 
and (c) the sum of SC2b and SH4b changing at different 
timescales with L = 11 

 
To show how the spatial traffic pattern changes, we calculate the weight vector S 

using M data points within a moving time window MT from one time period to the 
next. Figure 5 shows the weight vector S evolving with T = 2 s and with the time 
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window MT (= 200 × 2 s = 400 s) sliding ahead every 10 s. The time axis indicates 
the end of the moving time window. We can see the enhanced weights of C2b and 
H4b in the shifting spatial-temporal pattern. While the new congestion appears at 
C2b, the existing congestion at H4b, which was indistinguishable during the previous 
calm period, also exposes itself to the weight vector. The five observation points, 
which are not near C2b or H4b, really “sense” by themselves the gentle load 
fluctuation of these two leaf routers. The load wave seems to bring about a collective 
response in the entire network. This indicates that network-wide traffic appears 
correlated, and that spatial-temporal dynamics evolves as a coherent whole at some 
appropriate timescale. Therefore, macroscopic-level observation appears to provide 
significant information that could be exploited to achieve better network engineering 
and management.   

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: (a) the sum of SC2b and SH4b, and  (b) the largest 
eigenvalue λ1 with T = 1.6 s and L = 11 

  
With fewer observation points, the increased correlation during transient periods 

is very helpful for capturing the network-wide (spatial) pattern of traffic shifting over 
time. While both SC2b and SH4b become enhanced during periods of shifting pattern, 
we know, as shown in Figure 2, that the congestion on C2b will persist, and that H4b 
will gradually recover its normal condition. If we need distinguish among routers 
with increasing and diminishing congestion, then other techniques, such as active 
probing for bandwidth or delay, might be applied to specific targets identified by our 
passive method of network-wide observation.  

In larger networks, such as the Internet, it is very difficult, if not impossible, to 
observe the spatial-temporal pattern of congestion over the whole top tier, which 
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encompasses on the order of 10,000 autonomous systems. As discussed in the next 
section, spatial aggregation, e.g., from the leaf-router to subnet-router level, can help 
to implement a coarser space and time observation. First, however, we try to observe 
only a selected subset of the top network tier for the case of shifting congestion 
illustrated in Figure 2, while still including leaf-router details. We use measurements 
from the same five routers (subnets B4, D5, F4, I1, and J5) as before to form a 
spatial-temporal pattern over only three backbone-router zones of C, D, and E 
(comprising 26 leaf routers). Figure 6 shows the spatial-temporal pattern of the three 
regions, and reveals the congestion arising in C2b. This result suggests that our 
technique might provide a useful means to observe spatial-temporal dynamics in 
selected networks in a timely manner. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5: The spatial-temporal pattern evolving with T = 2 s and L = 5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The spatial-temporal pattern observed in three 
backbone-router zones, C, D and E, with L = 5 
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5   Monitoring DDoS Flooding Attacks 
 
Distributed denial of service (DDoS) attacks present a very serious threat to the 
stability of the Internet. By simply exploiting the tremendous asymmetry between the 
large-scale distributed network resources and local capacities at the victim, a 
flooding-based DDoS attack can build up an intended congestion very quickly near an 
attacked target. DDoS attacks use forged source addresses and other techniques [21] 
to conceal the locations of the true attack sources; thus DDoS attacks are among the 
most difficult to detect and stop. Today's Internet infrastructure is extremely 
vulnerable to such large-scale coordinated attacks, which may easily and effectively 
remove an attack victim from the Internet, even without exploiting any particular 
vulnerabilities in network protocols or weaknesses in system design, implementation, 
or configuration. 

To avoid congestion in the Internet, all flows under end-to-end controls adapt 
themselves in a self-organized, distributed manner. This adaptive behavior of flows in 
different directions plays a crucial role in keeping the Internet stable and in forming 
macroscopic traffic patterns. During a DDoS attack, the attack sources do not honor 
the normal end-to-end congestion control algorithms; rather, they overwhelm the 
intended victim, causing legitimate, well-behaved flows to back off, and then 
ultimately to starve. In addition, large-scale DDoS attacks also impair transit traffic 
flows, which happen to share a portion of the congested network. Such network-wide 
phenomena might show themselves in shifting patterns of spatial-temporal traffic. 

 
5.1 Modeling DDoS attacks 

  
To observe the macroscopic effect of DDoS attacks, we arrange 50 attack sources in 
our simulation model, which are distributed uniformly throughout the network. We 
enable our attack sources to launch constant-rate attacks collectively or using a 
subgroup technique (described further below). In our experiments, there are a total of 
22,000 source nodes, and more than 10,000 simultaneously active TCP connections; 
thus, DDoS flows cannot be easily identified from the legitimate background traffic.  

Usually, DDoS attacks directed against the network infrastructure can lead to 
more widespread damage than those directed against individual web servers. Here, 
one leaf router (I1a) will be the attack target. Routers under attack may fail to collect 
and transfer measurement data. Usually, it is difficult to monitor areas of interest 
without obtaining measurements from those areas. However, our analysis technique 
provides the ability to monitor areas of interest without such local measurements. We 
assume in our experiments that the attack on I1a disables the observation point 
deployed at the subnet-router I1; thus, we perform our analysis using data from only 
four observation points (B4, D5, F4 and J5; L = 4).  
 
5.2 Constant rate attack 
 
Constant rate, the simplest attack technique, is typical of known DDoS attacks. We 
arrange for all the 50 attack sources to launch constant-rate attacks collectively (that 
is, simultaneously). Here, we do not have the attack sources generate attack packets 
with full force [22], so that they cannot be easily identified through attack intensity at 
the source or in intermediate networks. We assume that the variable H represents the 
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intensity of an attack source. Since sources can only create one packet every 
millisecond, the maximum attack rate is one packet per millisecond, i.e., H ≤ 1 
(packet/ms). We experiment with a constant-rate DDoS attack where H = 1/10, that 
is, each attack source creates one attack packet for every 10 milliseconds beginning 
from t0 = 500 s.  

Figure 7 shows the weight vector S evolving with T = 2 s and with the time 
window MT (= 200 × 2 s = 400 s) sliding ahead every 10 s. We find that the attack 
really leads to a network-wide shift of spatial-temporal correlation, and the 
congestion on the victim (I1a) reveals itself at the enhanced weight of I1a. Since we 
observe this phenomenon and get the time and location of the attack without any help 
from the suffering victim, the network-wide monitoring could be used to activate 
specific detection and filtering mechanisms to isolate and stop the attack flows.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: The spatial-temporal pattern of the constant-rate 
attack with H = 1/10 and L = 4 

 
We also can observe the spatial-temporal pattern of the constant-rate attack at the 

subnet level by spatially aggregating the destinations of network flow at the subnet 
level from current measurements at the leaf-router level. Figure 8 shows such a 
coarser observation, where the weight vector S evolves with T = 2 s and with the time 
window MT (= 200 × 2 s = 400 s) sliding ahead every 20 s. Here, we can find that the 
constant-rate DDoS attack against I1a also results in the congestion on the subnet I1. 
With a lower computing time requirement, the coarser observation at this upper level 
still reveals a very useful picture of spatial-temporal dynamics. 
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5.3   Subgroup attack 
 

Attackers constantly modify attack dynamics to evade detection. Attack dynamics can 
be made very sophisticated should an attacker desire. For example, next we divide the 
50 attack sources into three subgroups, which are distributed separately in the left, the 
middle and the right parts of the larger network. Once the attack starts at t0 = 500 s, 
one of the three subgroups is always active so that the victim experiences continuous 
denial of service [21]. Given the dynamic nature of such a coordinated attack, it is 
extremely hard to detect where attack packets originate, and to stop them at 
intermediate or source networks to reduce overall congestion and increase resources 
available to legitimate traffic. 

 
 
 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: The spatial-temporal pattern of H = 1/10 constant-
rate attack at the subnet level with L = 4 

 
Figure 9 shows the weight vector S evolving with T = 2 s and with the time 

window MT (= 200 × 2 s = 400 s) sliding ahead every 10 s. We find that the subgroup 
attack reveals itself in the shifting spatial-temporal pattern. Comparing Figures 7 and 
9, we find that for our analysis technique the dynamic nature of the subgroup attack 
seems advantageous, because the increased correlation induced by shifts in attack 
traffic keeps the weight of the victim I1a salient over a longer time range.  

During the subgroup attack, we also observed a smaller portion of the larger 
distributed network, aggregated at the subnet level. Figure 10 shows the spatial-
temporal pattern of five backbone-router zones (from G to K), where the weight 
vector S evolves with T = 2 s and with the time window MT (= 200 × 2 s = 400 s) 
sliding ahead every 20 s, revealing the congestion arising in the subnet I1. The effects 
of the subgroup attack remain evident, while the aggregated, subnet-level observation 
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of only a portion of the network requires less computing time than for the case of 
Figure 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: The spatial-temporal pattern of the subgroup attack 
with H = 1/5 and L = 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 10: The spatial-temporal pattern of the subgroup 
attack, observed in five zones of backbone routers from G to 
K with L = 4 
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6   Concluding remarks 
 

In large-scale networks, such as the Internet, spatial-temporal correlations emerge 
from interactions among adaptive transport connections and from variations in user 
demands. By exploring the collective dynamics of large-scale networks, we seek 
ways to understand spatial-temporal correlations. We realize that capturing 
macroscopic patterns in correlations over time may help us to understand shifting 
traffic patterns, to identify operating conditions, and to reveal traffic anomalies.  

Analyzing spatial-temporal characteristics of traffic in large-scale networks 
requires both a suitable analysis method and a means to reduce the amount of data 
that must be collected. In particular, routers may be heavily utilized or under DDoS 
attack, and thus fail to collect and transfer data, but often also happen to be the parts 
of interest to monitor (due to their congested nature). In this chapter, we describe a 
novel technique that provides a useful way to observe network-wide congestion 
patterns shifting over time. To illustrate this technique and its potential promise, we 
reported results from some simulation experiments.  

We applied this technique successfully to identify network hotspots induced 
deliberately in a large-scale network. In particular, the effect of transient periods 
helped us to capture the network-wide traffic pattern shifting over time. We indicated 
that the spatial-temporal dynamics of network traffic appears as a coherent whole at 
an appropriate timescale. 

We demonstrated how to use this novel technique to expose large-scale 
distributed denial-of-service (DDoS) attacks. We find that DDoS flooding attacks 
lead to a network-wide shift in spatial-temporal correlation, and that congestion on 
the attack victim reveals itself in these spatial-temporal patterns. The macroscopic 
effect of DDoS attacks can provide significant information about where and when a 
DDoS attack might be underway, and could trigger further detection and filtering 
without any information from the attack victim. In particular, we find that the 
dynamic nature of the (more stealthy) subgroup attack seems to be an advantage in 
revealing the victim’s plight, because increased variation in traffic patterns lead to 
increased correlation, which is exploited by our analysis technique. 

Since observing the whole Internet in detail is impractical, we suggested a means 
to efficiently observe selective portions in detail, or to apply spatial aggregation to 
observe larger-scale networks with less detail. In either case, our analysis method 
lowers computing time requirements, while revealing shifting traffic patterns over 
both space and time. If proven successful when applied to real network measurement 
data, our proposed technique could become a powerful tool to monitor spatial-
temporal behavior network-wide in real time, and could ultimately contribute to 
improvements in network engineering and management. 
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